Advanced Chunk Processing Library 0.2.0
A comprehensive C++ library for advanced data chunking strategies and processing operations
Loading...
Searching...
No Matches
test_visualization.cpp File Reference
#include "chunk.hpp"
#include <gtest/gtest.h>
#include <vector>
+ Include dependency graph for test_visualization.cpp:

Go to the source code of this file.

Classes

class  ChunkVisualizerTest
 

Macros

#define CHUNK_PROCESSING_TEST_VISUALIZATION_HPP
 

Functions

 TEST_F (ChunkVisualizerTest, EmptyChunks)
 
 TEST_F (ChunkVisualizerTest, PlotChunkDistribution)
 
 TEST_F (ChunkVisualizerTest, PlotChunkSizes)
 

Macro Definition Documentation

◆ CHUNK_PROCESSING_TEST_VISUALIZATION_HPP

#define CHUNK_PROCESSING_TEST_VISUALIZATION_HPP

Definition at line 2 of file test_visualization.cpp.

Function Documentation

◆ TEST_F() [1/3]

TEST_F ( ChunkVisualizerTest  ,
EmptyChunks   
)

Definition at line 50 of file test_visualization.cpp.

50 {
51 std::vector<std::vector<double>> empty_chunks;
52
53 // Get chunk sizes for empty chunks
54 std::vector<size_t> sizes;
55 for (const auto& chunk : empty_chunks) {
56 sizes.push_back(chunk.size());
57 }
58
59 EXPECT_TRUE(sizes.empty());
60}

◆ TEST_F() [2/3]

TEST_F ( ChunkVisualizerTest  ,
PlotChunkDistribution   
)

Definition at line 33 of file test_visualization.cpp.

33 {
34 // Calculate chunk statistics
35 double mean = 0.0;
36 size_t total_elements = 0;
37
38 for (const auto& chunk : test_chunks) {
39 for (const auto& value : chunk) {
40 mean += value;
41 total_elements++;
42 }
43 }
44 mean /= total_elements;
45
46 // Verify mean is in expected range
47 EXPECT_NEAR(mean, 5.0, 0.1);
48}

◆ TEST_F() [3/3]

TEST_F ( ChunkVisualizerTest  ,
PlotChunkSizes   
)

Definition at line 16 of file test_visualization.cpp.

16 {
17 // Get chunk sizes
18 std::vector<size_t> sizes;
19 for (const auto& chunk : test_chunks) {
20 sizes.push_back(chunk.size());
21 }
22
23 // Create expected sizes
24 std::vector<size_t> expected_sizes = {3, 2, 4};
25
26 // Compare vectors
27 ASSERT_EQ(sizes.size(), expected_sizes.size());
28 for (size_t i = 0; i < sizes.size(); ++i) {
29 EXPECT_EQ(sizes[i], expected_sizes[i]);
30 }
31}